zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A point model for the free cyclic submodules over ternions. (English) Zbl 1273.51004
For a commuative field $F$, the ring $T$ of upper triangular $2\times 2$ matrices over $F$ ist called the ring of ternions. It is shown that the set of all free cyclic submodules of $T^2$ admits a point model in $\mathrm{PG}(7,F)$ which is a smooth algebraic variety $\mathcal{X}\cup \mathcal{Y}$, where $\mathcal X$ corresponds to the unimodular submodules and $\mathcal Y$ (corresponding to the non-unimodular ones) is a line.
51B99Nonlinear incidence geometry
51C99Ring geometry (Hjelmslev, Barbilian, etc.)
14J26Rational and ruled surfaces
16D40Free, projective, and flat modules and ideals (associative rings and algebras)
Full Text: DOI
[1] Beck H.: Eine Cremonasche Raumgeometrie. J. Reine Angew. Math. 175, 129--158 (1936) · Zbl 0014.22702
[2] Beck H.: Über Ternionen in der Geometrie. Math. Z. 40(1), 509--520 (1936) · Zbl 0012.36703 · doi:10.1007/BF01218877
[3] Benz W.: Über eine Cremonasche Raumgeometrie. Math. Nachr. 80, 225--243 (1977) · Zbl 0367.50025 · doi:10.1002/mana.19770800117
[4] Benz W.: Zur Umkehrung von Matrizen im Bereich der Ternionen. Mitt. Math. Ges. Hambg. 10(7), 509--512 (1979) · Zbl 0436.16017
[5] Blunck A., Herzer A.: Kettengeometrien--Eine Einführung. Shaker Verlag, Aachen (2005)
[6] Depunt J.: Sur la géométrie ternionienne dans le plan. Bull. Soc. Math. Belg. 11, 123--133 (1959) · Zbl 0101.37302
[7] Depunt, J.: Grondslagen van de analytische projectieve ternionenmeetkunde van het platte vlak. Verh. Konink. Acad. Wetensch. Lett. Schone Kunst. België. Kl. Wetensch. 22(63) (1960)
[8] Havlicek H., Matras A., Pankov M.: Geometry of free cyclic submodules over ternions. Abh. Math. Semin. Univ. Hambg. 81, 237--249 (2011) · Zbl 1267.51005 · doi:10.1007/s12188-011-0060-5
[9] Havlicek H., Saniga M.: Vectors, cyclic submodules, and projective spaces linked with ternions. J. Geom. 92(1--2), 79--90 (2009) · Zbl 1171.51002 · doi:10.1007/s00022-008-2090-4
[10] Herzer A.: Chain geometries. In: Buekenhout, F. (ed.) Handbook of Incidence Geometry, pp. 781--842. Elsevier, Amsterdam (1995) · Zbl 0829.51003
[11] Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford University Press, Oxford (1991) · Zbl 0789.51001
[12] Pankov, M.: Grassmannians of Classical Buildings. Algebra and Discrete Mathematics, vol. 2. World Scientific, Singapore (2010) · Zbl 1285.51002
[13] Saniga, M., Havlicek, H., Planat, M., Pracna, P.: Twin ”Fano-snowflakes” over the smallest ring of ternions. SIGMA Symmetry Integrability Geom. Methods Appl. 4, art no. 050 (2008) (electronic) · Zbl 1140.51300
[14] Saniga, M., Pracna, P.: A Jacobson radical decomposition of the Fano-Snowflake configuration. SIGMA Symmetry Integrability Geom. Methods Appl. 4, art no. 072 (2008) (electronic) · Zbl 1165.51300
[15] Shafarevich I.G.: Basic Algebraic Geometry 1. Springer, Berlin (1994) · Zbl 0797.14001